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Ammonia oxidizing archaea (AOA) inhabiting soils have a central role in the global nitrogen cycle. Copper
(Cu) is central to many enzymes in AOA including ammonia monooxygenase (AMO), the enzyme
involved in the first step of ammonia oxidation. This study explored the physiological response of the
AOA soil isolate, Nitrososphaera viennensis (EN76T) to Cu-limiting conditions in order to approach its
limiting threshold under laboratory conditions. The chelator TETA (1,4,8,11-tetraazacyclotetradecane N,
N0 , N00 , N000-tetraacetic acid hydrochloride hydrate) with selective affinity for Cu2þ was used to lower
bioavailable Cu2þ in culture experiments as predicted by thermodynamic speciation calculations. Results
show that N. viennensis is Cu-limited at concentrations �10�15 mol L�1 free Cu2þ compared to standard
conditions (10�12 mol L�1). This Cu2þ limiting threshold is similar to pure cultures of denitrifying bacteria
and other AOA and AOB inhabiting soils, freshwaters and sewage (<10�16 mol L�1), and lower than pure
cultures of the marine AOA Nitrosopumilus maritimus (<10�12.7 mol L�1), which also possesses a high
amount of Cu-dependent enzymes.

© 2020 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
1. Introduction

Ammonia oxidizing archaea (AOA), ammonia oxidizing bacteria
(AOB) and comammox bacteria contribute to the global nitrogen
biogeochemical nitrogen cycle via nitrification [1e7]. They all
contain, the copper (Cu)-dependent enzyme ammonia mono-
oxygenase, which is the key enzyme of ammonia oxidation, the first
step of nitrification [1,8,9]. In particular it is hypothesized that AOA
contain a large number of Cu-dependent enzymes including
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plastocyanins and multicopper oxidases based on their abundance
in AOA genomes [10,11] and proteomes [12e14]. This is in contrast
to AOB, whose energy metabolism (besides AMO) and respiratory
chain requires mostly iron (Fe) [15].

In general, metals such as Cu are reversibly bound to soil par-
ticles and only a small bioavailable fraction exists in solution [16]. In
natural systems, Cu predominantly exists in the monovalent and
divalent redox states. Cu(I) is unstable in aqueous solution and is
converted to Cu(II) if it is stabilized as a component of a mineral
phase or in a complex [17] such as a Cu(I) specific metallophore
[18]. Even in suboxic environments the Cu(II) redox state can be
sufficiently stabilized by complexation to humic acids to lessen or
prevent Cu2þ reduction [19]. Generally, it is assumed that only
soluble Cu2þ is available for biological uptake and is therefore used
as a proxy for the bioavailability of Cu [16] unless a high affinity
uptake mechanism involving chalkopohores is used [20]. The
presence of inorganic ligands (Cl�, PO4

3�, SO4
2�, Fe, Mn, carbonates),
d.
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Table 1
FWM medium composition used to grow Cu-limited and Cu-replete cultures of
N. viennensis.

Final Concentration mol/L

Salts
NaCl 0.017
MgCl2 6H2O 0.0019
CaCl2 2H2O 6.8 � 10�3

KCl 0.0067
NaHCO3 0.002

Nutrients
NH4Cl 0.002
KHPO4 0.0014
Na-pyruvate 1.0 � 10�4

Buffer
HEPES (7.5) 0.01

FeNaEDTA solution 7.5 � 10�6

Non Chelated trace element mixture
HCl 1 � 10�3

H3BO3 5 � 10�7

MnCl2 4H2O 5 � 10�7

CoCl2 6H2O 8 � 10�7

NiCl2 6H2O 1 � 10�7

ZnSO4 7H2O 5 � 10�7

Na2MoO4 2H2O 1.5 � 10�7

CuCl2 H2Oa 1.0 � 10�8

Antibiotics
Carbenicillin 2.6 � 10�4

Kanamycin 2.6 � 10�4

Vitamins
Biotin 8 � 10�8

Folic acid 5 � 10�8

Pyrodoxine HCl 4.8 � 10�7

Thiamine HCl 1.4 � 10�7

Riboflavin 1.3 � 10�7

Nicotinic acid 4.0 � 10�7

DL Panthothenic acid 2.0 � 10�7

p-aminobenzoic acid 3.6 � 10�7

Choline chloride 1.4 � 10�6

Vitamin B12 7.3 � 10�12

a For Cu-limited cultures, Cu was excluded from the trace metal solution.

C. Reyes et al. / Research in Microbiology 171 (2020) 134e142 135
clays and organic substances, like humic acids [19], which complex
free Cu2þ in soil solution (i.e. liquid water foundwithin soils) can all
lower its bioavailability [21e23]. In soils that approach neutral pH
conditions, free Cu can adsorb to oxides and clays [24]. Thus,
environmental factors such as pH, Eh, soil type, water hardness and
organic content can influence the bioavailability of Cu [25]. A recent
study by Bayer et al. [26] showed that certainmarine AOA appear to
depend highly on Cu [26] based on their Cu cell content. Perhaps
this is also true of other AOA, including terrestrial species. If so,
differences in the bioavailability of Cu in turn could influence
whether AOA or rather AOB are more active in soils [27].

Reduced bioavailability of Cu can lead to Cu limitation for many
microorganisms. The effects of Cu limitation on cell physiology,
metabolism or uptake have been studied using pure cultures of
denitrifying bacteria [28], methane oxidizing archaea [29] and
bacteria [30], somemarine diatoms [31e33] andmore recently also
the marine AOA Nitrosopumilus maritimus SCM1 [13,34]. In some of
these studies, cultures grew slower at free Cu2þ concentrations of
<10�12.7 mol L�1 (N. maritimus SCM1) [34], <10�14 mol L�1 (oceanic
diatoms) [33], and <10�16 mol L�1 (Pseudomonas stutzeri) [28],
Nitrosoarchaeum koreense, Nitrosomonas europaea, Ca. Nitro-
sotenuis chungbukensis and Ca. Nitrosocosmicus oleophilus [35])
compared to Cu-replete conditions. In environmental studies, Cu
bioavailability to Archaea in Hood Canal fjord [36] and to Thau-
marchaeota in a salt marsh estuary [37] has also been studied. In
the former study, free Cu2þ concentrations from 1.3 � 10�12 M to
6 � 10�15 M were reported to limit AOA abundances in Hood Canal,
whereas in the latter study, Thaumarchaeota were found to thrive
at free Cu2þ concentrations of 0.4 � 10�15 M.

In this study, the physiological response of the soil representa-
tive soil AOA isolate, Nitrososphaera viennensis [38,39] to Cu-
limiting conditions was explored. The hypothesis that Cu limita-
tion would hinder the ability of N. viennensis to oxidize ammonia
was tested in batch cultures. The chelator TETA (1,4,8,11-
tetraazacyclotetradecane-N, N0, N00, N000-tetraacetic acid hydrochlo-
ride hydrate) with selective affinity for Cu2þ, was used to control
bioavailable Cu2þ in culture experiments.

2. Methods

2.1. Media preparation

Ultrapure water (18.2 MΏ cm, 2 ppb TOC) was used to prepare
all media and to rinse polypropylene plastic bottles using water
from a MilliQ®-Elix® and ELGA PureLab Chorus purification sys-
tem. To reduce Cu contamination all media components were
prepared in plastic bottles that had been washed with a mild
detergent and then acid washed for 2e4 weeks, first in 3.8% (v/v)
HCl, and then in 7.4% (v/v) nitric acid. In between acid washes and
following the nitric acid wash, bottles were rinsed five times with
ultrapurewater. Preparation of all media components and handling
of cultures was done in a trace metal free clean room environment
with a HEPA filtration system. One liter of FWM medium [1 g NaCl,
0.4 g MgCl2$6H2O, 0.1 g CaCl2$2H2O, 0.2 g KH2PO4, 0.5 g KCl
(Emsure®, ACS, ISO Reagents)], amended with 1 mL trace element
solution [HCl 100 mM (2X distilled HCl), H3BO3 0.5 mM,
MnCl2$4H2O, CoCl2 $ 6H2O, NiCl2$ 6H2O, ZnSO4 $7H2O, Na2MoO4
$2H2O, 0.01 mM CuCl2 $ 2H2O (Emsure®, ACS, ISO Reagents)], 1 mL
vitamin solution [0.08 mM biotin (�99% pure); 0.05 mM folic acid
(�97% pure), 0.48 mM pyrodoxin HCl (�99% pure), 0.14 mM thia-
mine HCl (�99% pure), 0.13 mM riboflavin (�97% pure), 0.4 mM
nicotinic acid (�98% pure), 0.2 mM D-L-panthothenic acid (�97%
pure), 0.36 mM p-aminobenozic acid (�99% pure), 1.4 mM choline
chloride (�98% pure), 7.3 � 10�6 M vitamin B12 (Millipore®)],
7.5 mM ferric sodium EDTA (Fe(III)-chloride Emsure®, ACS, ISO
Reagent, EDTA Analytical Reagent), 2 mM NH4Cl (�99.7% pure),
2 mM NaHCO3 (�99.5% ACS, ISO Reagent) (as carbon source) and
1 mM sodium pyruvate (�99% pure) (as a free radical scavenger),
was used for growth. The mediumwas buffered with 10 mMHEPES
(Pufferan® �99.5% pure)/6 mM NaOH (Reagent Grade) to pH 7.5
(Table 1). FWM medium, trace element mixture, vitamin solution,
NH4Cl, NaHCO3, sodium pyruvate and HEPES buffer were filter
sterilized with a sterile 0.2 mm PVDF filter (Fisher Scientific
SCGVU05RE) and stored in the attached polystyrene bottles at 4 �C.

2.2. Culture conditions

N. viennensis (strain EN76T) was isolated from garden soil as
previously described [38,39]. Its growth was initiated from a 0.5 mL
40% glycerol stock by first spinning down the cells at 16,168�g for
30min (4 �C), removing the supernatant and then resuspending the
cell pellet in 0.5 mL FreshWaterMedium (FWM). The re-suspended
cells were used to inoculate a 1 L volume glass bottle with a blue
plastic cap, containing 500 mL FWM medium supplemented with
kanamycin (100 mg mL�1) (�750 I.U/mg, biochemistry grade) to
prevent bacterial contamination [38,39]. N. viennensis cultures
were incubated at 42 �C in the dark without shaking. Growth was
monitored by following NH4

þ consumption and NO2
� production

using two modified colorimetric assays [40,41] described below.
Following consumption of 1 mM NH4

þ, the culture was split into
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subcultures by transferring growing cells to 20mL of FWM in 30mL
polystyrene tubes (Greiner Bio-One; 201172). An inoculation vol-
ume of 0.25% was used to start 20 mL cultures. FWM media was
supplemented with kanamycin (100 mg mL�1) and carbenicillin
(100 mg mL�1) (�88% pure, biochemistry grade). Subcultures were
continuously transferred every seven days for several weeks before
PCR testing the cultures for bacterial contamination and initiating
the Cu limitation experiments.

2.3. Cell counts and growth rates

200 mL of cell culture were fixed with 4 mL glutaraldehyde (25%)
for at least 10 min before freezing cells at �20 �C. Prior to analysis,
samples were diluted (1:10 or 1:50) in 0.2 mm PVDF filtered Tris-
EDTA buffer [1 M Tris-HCl, 0.1 M EDTA, pH 8] and stained with
SybrGreen I (1:20,000�). Samples were incubated in the dark for
~10 min and then analyzed with a FACSAria II flow cytometer (BD
Biosciences) as previously described [42]. Nitrite production was
previously shown to follow biomass production [38]. Thus, NO2

�

concentrations were used to calculate the specific growth rate (m).
NO2

� concentrations were plotted on a logarithmic scale to deter-
mine the linear portion of the growth curves. These data were
selected, re-plotted on a normal scale and the value of the slope of
the trend-line used as the growth rate.

2.4. Nucleic acid extraction and PCR testing

Nucleic acids were extracted from 1 mL culture in exponential
growth phase (determined by measuring the NO2

� production).
Cells were centrifuged at 16,168�g (4 �C) for 30 min. The super-
natant was discarded and cells were resuspended in SDS Extraction
Buffer [0.14MNaCl, 0.02 MNa2SO3, 0.1 M Tris/HCl, 0.5 M EDTA pH 8
and 1% SDS]. This mixture was transferred to sterile 2 mL micro-
tubes (Sarstedt 72.693.005) containing ~ 0.5 g of 0.1 mm zirconia
beads (Carol-Roth N033.1) that had been baked at 180 �C for at least
3 h. Phenol-chloroform-isoamyl alcohol (0.5 mL) [PCI, 25:24:1
(vol:vol:vol); pH 6.7e8] was first added to facilitate DNA recovery.
Cells were lysed by bead beating at 4 m/s for 30 s using a Fast Prep-
24 instrument (MP Biomedicals). After bead beating and removal of
PCI, chloroform-isoamyl-alcohol (0.5 mL) [CI, 24:1 (vol:vol)] was
added to samples. During the PCI and CI extraction steps, tubes
were centrifuged at 16,168�g (4 �C) for 10 min. Between PCI and CI
steps, before centrifugation, tubes were shaken heavily. Finally,
nucleic acids were precipitated from the aqueous phase by adding
1 mL of glycogen (Thermo Fisher EP0701) and 2 volumes of 40%
polyethylene glycol (molecular weight 5000e7000, Sigma 81255)
at 4 �C overnight, followed by centrifugation at 16,168�g (4 �C) for
30 min. Pellets were washed with 1 mL of 4 �C cold 70% ethanol, air
dried for 3e5 min under vacuum [Eppendorf Vacufuge Plus, 30 �C/
AQ setting] and resuspended in 50 mL of DNase-free water. SDS
Extraction Buffer, PEG and ethanol solutions were made using
DNase-freewater. Total DNA concentrationwasmeasured using the
NanoDrop Spectrophotometer ND-1000 (PeqLab VWR Interna-
tional GmbH) following the manufacturer’s instructions.

DNA of the culture samples was analysed by performing a PCR
using 2 different archaea primer sets including: 0.2 mM of primers
Arc109f [50-ACKGCTCAGTAACACGT-30] [43] and Arc1492r [50-
GYYACCTTGTTACGACTT-30] [44], CamoA-19f [50-ATGGTCTGGYT-
WAGACG-30] originally published by Tourna et al. [38] andmodified
by Pester et al. [45], and TamoA-692r [50-TGGCANTAYMGATG-
GATGGC-30] [46]. Possible bacterial contamination was assessed
using 0.2 mM of bac27f [50-AGAGTTTGATCCTGGCTCAG-30] and
bac1492r [50-GGTTACCTTGTTACGACTT-30] [47]. 2 mL of DNA sample
was used along with the following: Thermo Fisher 200 mM dNTP
mix (R0241), 0.002 mg mL�1 BSA (B14), 0.15 mL Dream-Taq DNA
polymerase (EP0701), 1X Dream-Taq buffer and DNA free water in a
25 mL reaction volume. The following conditions were used for 16S
rRNA primers: 95 �C for 5 min followed by 35 cycles of 94 �C for
30 s, 55 �C for 30 s and 72 �C for 2min, and a final elongation step at
72 �C for 10 min. The following conditions were used for amoA
primers: 95 �C for 5 min followed by 35 cycles of 94 �C for 30 s,
58 �C for 45 s and 72 �C for 45 s, and a final elongation step at 72 �C
for 10min. PCR reactions were checked on a 1% lowmelting agarose
gel.

2.5. PhreeqC modelling

Free concentration of metals including Cu were calculated using
the PhreeqC [48] software package (version 3.1.7e9213) with sta-
bility constants from theminteq.v4 database. Stability constants for
TETA input were from Anderegg et al. [49] and those for kanamycin
were from Szczepanik et al. [50]. Both stability constants were
corrected for zero ionic strength i.e. m ¼ 0. TETA binds Cu2þ with a
stability constant of 1023.5.

2.6. TETA toxicity tests

Under Cu-replete conditions, N. viennensis is predicted to have
~10�12 M Cu available in FWM with added supplements as
described above. To test whether TETA was toxic to cells, 0.28 mM
CuCl2$2H2O was added to FWM in addition to 1 mM of TETA (�95%
pure), to achieve a free Cu2þ concentration of ~10�12 M.

2.7. Establishing Cu-limited cultures

The trace element solution used in the Cu-limited sub-cultures
was prepared form ACS/ISO analytical-grade chemicals. Attempts
were made to further purify the nutrient solutions using chelating
resins. However, the cultures showed clear toxicity responses after
Cu was added to the medium prepared with chelated solutions.
Therefore, we used salts as received. The total concentration of Cu
in the FWM with additives was measured using ICP-MS and no Cu
was detected in the medium. In the presence of Cu and TETA, Cu
concentration is buffered and tightly controlled. Therefore, changes
in free Cu activities throughout the growth curve should be
extremely low.

Cu-limited cultures were initiated by transferring a 0.25%
inoculation volume to 20 mL of FWM in polystyrene tubes. The
trace element solution for Cu-limited cultures did not contain any
Cu. TETA and CuCl2$2H2O were individually added from stocks to
cultures at various concentrations as described in Table 2 to
establish the following free Cu2þ concentrations: experiment Cu7
(3 � 10�13 mol L�1), Cu9 (3 � 10�14 mol L�1), Cu10
(6 � 10�15 mol L�1) and Cu12 (7 � 10�16 mol L�1). Cu7 through
Cu12 refer to arbitrary sample names. A control with no Cu and no
TETA was also included. These cultures were continuously trans-
ferred and monitored for growth by measuring the NO2

- concen-
tration. Cu limitation was assessed as a decrease in NH4

þ

consumption and NO2
- production relative to the Cu-replete culture.

Furthermore, Cu-limited cultures were amended with 5 nM of Cu2þ

during exponential phase to determine if they could recover their
ability to produce NO2

- at levels comparable to Cu-replete cultures.

2.8. Ammonium and nitrite measurements

Ammonium concentrations were determined based on a spec-
trophotometric method modified after Kandeler et al. [40]. Briefly
200 mL of sample was combined with 400 mL of FWM and to this
300 mL of Color Reagent [5.18 mM sodium salicylate, 2.15 � 10�5 M
sodium nitroprusside, 0.1 M NaOH] and 120 mL Oxidation Solution



Table 2
Estimated free Cu2þ present in FWM using PhreeqC in the presence and absence of TETA.

Total TETA added [uM] Total Cu added [mM] [free Cu2þ] calculated [mol L�1] Experiment No. of Experiments Biological replicates

1 0b �5 � 10�21 e e e

1 0.29 3 � 10�12 Cu-TETA 2 4
0 0.01a 3 � 10�12 Cu-Replete 3 7
1 0.05 3 � 10�13 Cu7 2 6
1 0.005 3 � 10�14 Cu9 3 7
1 0.006 3 � 10�14 Cu10 þ spike 2 5
1 0.001 6 � 10�15 Cu10/Cu-Limited 7 3
1 0.0001 7 � 10�16 Cu12/Cu-Limited 2 4
0 0b <7 � 10�16 No Cu, No TETA 3 7

a 0.01 mM is the total Cu normally added to the standard FWM (see Table 1).
b 0.9 � 10�9 mol L�1 Cu is the limit of quantification of our instrument and was the value used as input to calculate the free Cu2þ concentration.
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[3.91 � 10�5 M of dichloroisocyanuric acid] was added. After
mixing, samples were stored in the dark at room temperature for
30 min. The absorbance of 200 mL samples was measured in a 96-
well plate (Greiner Bio-one; 65501) with a UV spectrophotometer
[TECAN Sunrise Spectrophotometer] at 660 nm wavelength. NO2

�

concentrations were determined by using a spectrophotometric
method modified after Griess [41]. Briefly, 20 mL of sample was
combined with 780 mL FWM and 200 mL of sulfanilamide/NED Re-
agent [0.058 M sulfanilamide, 1.9 mM N-(1-Napthyl)-ethyl-
endiamin dihydrochloride, 2.22 M ortho-phosphoric acid 85%] was
added. After mixing, the samples were stored in the dark at room
temperature for 30 min before measuring the absorbance at
545 nm wavelength.

2.9. LC-ICP-MS supernatant analysis for Cu speciation

To measure potential Cu speciation changes, samples were
analyzed by Liquid Chromatography-Inductively Coupled Plasma-
Mass Spectrometry (LC-ICP-MS). Samples consisted of incubated
culture supernatants or blank media which were prepared by
filtration (0.2 mm syringe filters) and addition of CuCl2 to a final
concentration of 1 mM and 100 mM to look for strong but low
abundance ligands as well as possibly weaker ligands at higher
concentrations. The LC-ICP-MS platform consisted of a liquid
chromatography system (Ultimate 3000, ThermoFisher) coupled to
an ICP-MS (iCAP RQ, ThermoFisher). Reversed phase chromatog-
raphy was done with a C18 column (ACE Excel 1.7 SuperC18,
2.1 � 100 mm). Injected samples (25 mL) were separated at pH 7
under a gradient of solutions A and B (solution A: water þ 5 mM
ammonium acetate, pH 7; solution B: acetonitrile þ 5 mM
ammonium acetate; gradient 2e100% B, flow rate 0.4 mL min�1).
The column outflow was split using a flow-splitter (Analytical
Scientific Instruments, 600-PO10-06) to introduce 0.1 mL min�1

into the ICP-MS with a zero dead volume PFA micro-nebulizer
(Elemental Scientific). Oxygen was used as an added gas in the
ICP-MS (flow 8.75 mLmin�1) to minimize carbon deposition on the
ICP-MS cones (Pt cones) at high organic buffer concentrations. The
instrument was operated in KED mode with He as a collision gas to
analyze the 63Cu signal.

2.10. HR-LC-MS supernatant metabolite analysis

High-Resolution Liquid-Chromatography Mass-Spectrometry
(HR-LC-MS) was used to analyze metabolites, such as potential Cu
chelating exudates. Samples consisted of incubated culture super-
natants or blank media and were analyzed after filtration (0.2 mm
syringe filters) and acidification (0.1% formic acid). To one incu-
bated sample, we added CuCl2, to a final concentration of 100 mM, to
search for potential Cu chelating metabolites by screening for Cu
specific isotope patterns. The remaining samples were analyzed
without added Cu2þ. HR-LC-MS analyses were performed on a high
mass accuracy and resolution, reversed phase HPLC-MS platform,
using a C18 column (Waters Acquity UPLC BEH C18 1.7 mm,
2.1 � 100 mm) coupled to an Orbitrap ID-X mass spectrometer
(ThermoFisher). Injected samples (25 mL) were separated under a
gradient of solutions A and B (solution A: water þ 0.1% formic acid;
solution B: acetonitrile þ 0.1% formic acid; gradient 2e100% B, flow
rate 0.4 mL min�1). Full-scan mass spectra were acquired in
positive-ion mode (m/z ¼ 85e1000) with a resolving power of
R ¼ 100,000 (at m/z ¼ 400). MS/MS spectra were simultaneously
acquired using CID in the Orbitrap. The column outflow was
diverted to waste for the first 1.5 min to desalt the sample before
introduction into the mass spectrometer. The HR-LC-MS data ac-
quired was analyzed using mzMine2 [51] to generate a list of fea-
tures defined by m/z, retention time, and peak intensity. The major
features that were differentially present in blank media and sam-
ples could be assigned to the added antibacterial compounds and
compounds generated by abiotic reaction or metabolic modifica-
tions of the antibiotics (Table S1). The samples with added Cu were
mined for potential Cu chelators by (1) filtering for the 63Cu-65Cu
isotope pattern and by (2) searching for co-eluting free ligands of
Cu complexes by their exact mass difference (Dm
(-2Hþ þ Cu2þ) ¼ 60.9139; Dm (-Hþ þ Cuþ) ¼ 61.9218) as described
previously [52,53]. We observed Cu chelation by the added anti-
biotics and their related compounds.

3. Results

3.1. Modelling of free Cu2þ concentrations

The background concentration of Cu in FWM without Cu addi-
tions was below the limit of quantification of our instrument
(0.9� 10�9 mol L�1 for total Cu). Based on PhreeqC calculations, we
estimate the standard FWM with 1 mM TETA and no additional Cu
has a free Cu2þ concentration of �5 � 10�21 mol L�1. Cu-replete
cultures are predicted to have a free Cu2þ concentration of
3 � 10�12 mol L�1. Cultures studied in the presence of 1 mM TETA
and variable Cu concentrations (Table 2) are predicted to have the
following free Cu2þ concentrations available to them: Cu7
(3 � 10�13 mol L�1), Cu9 (3 � 10�14 mol L�1), Cu10
(6 � 10�15 mol L�1) and Cu12 (7 � 10�16 mol L�1), No Cu, No TETA
(�7� 10�16mol L�1). It is known that the antibiotics used in culture
solutions (i.e., kanamycin and carbenicillin) can chelate copper
[50,54,55]. Mass spectrometry confirmed the presence of such
complexes in the culture solution after addition of excess Cu (vide
infra). However, modelling results showed that in the presence of
kanamycin, the free Cu2þ concentration was the same order of
magnitude as predicted in the standard FWM with 1 mM TETA and
no additional Cu. Non-conditional stability constants were not
available for carbenicillin to calculate its effect on Cu speciation



Fig. 1. Aerobic ammonia oxidation in Cu-replete batch cultures of N. viennensis grown
with and without TETA. The data and error bars represent the average and standard
deviation of 4 biological replicates (n ¼ 4) from two experiments. Dotted lines
represent ammonium concentrations and solid lines nitrite concentrations. Elevated
Cu in 1 mM TETA medium ensured sufficient Cu was available to cells and compensated
for Cu-TETA complex formation.
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under the experimental conditions. While we assume that the af-
finity of the Cu-specific ligand TETA for Cu is significantly higher
than the antibiotics, it should be noted that the calculated free Cu2þ

activity constitutes an upper limit as it may be further lowered by
the formation of complexes with antibiotics.

3.2. Analysis of Cu chelation and metabolites in culture
supernatants

In order to verify if biogenic Cu-binding ligands in the spent
medium changed Cu speciation and availability, speciation analysis
was done by liquid chromatography with inductively coupled
plasma mass spectrometry (LC-ICP-MS). Potential Cu binding me-
tabolites in the media were analyzed by high resolution electro-
spray ionization mass spectrometry (HR-LC-MS) [56]. LC-ICP-MS
provides a quantitative analysis of metal complexes that can be
separated by the chromatographic column (reversed phase C-18
column) while HR-LC-MS can be used to discover and characterize
metal chelating metabolites [52,53]. We compared added Cu con-
centrations of 1 mM and 100 mM to titrate ligands and resolve
possible strong chelators present at low concentrations from
weaker ligands at higher concentrations (Fig. S1 and S2). After
adding Cu to a final concentration of 1 mM, Cu was mainly bound to
a hydrophilic compound in agreement with chelation toTETA. After
adding Cu to a final concentration of 100 mM, we observed Cu
binding by the added antibiotics (260 mM kanamycin and carbe-
nicillin) as expected. HR-LC-MS analysis detected a reaction prod-
uct between carbenicillin and kanamycin and two other
compounds related to carbenicillin reactions (Table S1). It is known
that these antibiotics are not toxic toN. viennensis [38,39] and could
potentially be partially degraded by enzymes present in their
proteome [12]. The added antibiotics were most likely metabolized
in both Cu-limited and Cu-replete spent media, which showed
more than 10� lower carbenicillin peaks with simultaneous in-
creases in the concentration of putative metabolic by-products of
the antibiotics’ degradation (Table S1). However, no strong biogenic
Cu-binding compounds were detected in the spent media.

3.3. TETA toxicity tests

When N. viennensis was exposed to 1 mM TETA and excess Cu
(0.29 mM), to provide it with the standard total Cu concentration
(0.01 mM, Table 2), this culture was able to oxidize ~ 2 mM NH4

þ and
produce ~ 1800 mMNO2

- . This is comparable to the standard culture
(Fig. 1), demonstrating that TETAwas not toxic toN. viennensis cells.

3.4. Ammonia oxidation activity and growth of Cu-limited cultures

When grown in the presence of TETA, the Cu-limited cultures
Cu10 and Cu12 showed a decrease in their ability to oxidize NH4

þ

compared to Cu7, Cu9 and the Cu-replete cultures (Fig. 2). At day 12,
Cu7, Cu9 and the Cu-replete cultures had produced ~1800 mM of
NO2

- and Cu10 had produced ~400e700 mM of NO2
�. At day 11, Cu12

had produced ~200 mM NO2
�. When a 5 nM spike of Cu was intro-

duced into Cu10 at day 5 of growth, an increase in NO2
� production

was observed concomitant with an increase in NH4
þ consumption

(Fig. 2). At stationary phase, the spiked Cu10 culture had produced
~1800 mM of NO2

� comparable to Cu7, Cu9 and the Cu-replete cul-
tures. Cell numbers showed the same trend as NO2

� production
(Fig. 3). At Day 12, Cu10 showed low cell numbers (~1 � 107 cells
mL�1) compared to Cu7, Cu9 and Cu-replete cultures
(~3e5� 107 cells mL�1). Control incubations without addition of Cu
and TETA showed the lowest cell numbers (<1 � 107 cells mL�1),
confirming that contamination of Cu in nutrient solutions, if pre-
sent, were low enough not to interfere with the growth
experiments. Growth rates for each culture also displayed a similar
trend as NO2

� production and cell numbers. Cu7, Cu9 and Cu-replete
cultures had the highest specific growth rates (~0.024 h�1),
whereas Cu10 and Cu12 cultures showed a decreased growth rate
(~0.008 h�1) and (~0.004 h�1) (Fig. 4).
4. Discussion

Results of this study show that the ability of N. viennensis to
oxidize ammonia and grow is hindered when Cu levels are at or
below 10�15 mol L�1 free Cu2þ and that it recovers this ability upon
reintroduction of Cu. These results are similar to Cu thresholds
observed for N. viennensis and other AOA and AOB tested in labo-
ratory studies using histidine as a Cu-binding ligand instead of
TETA [35]. However, results from this study differ from the marine
AOA, N. maritimus SCM1 whose ammonia oxidation ability was
impeded below 10�12 mol L�1 free Cu2þ in laboratory based studies
[34]. It is possible that N. viennensis could take up Cu using a
different mechanism than N. maritimus thereby explaining this
difference in Cu-limitation threshold.

The ability ofN. viennensis to tolerate lower levels of copper than
N. maritimus could be partially attributed to the larger amount of
copper transporters and regulatory genes found in the genome
[12,57]. The genome of N. viennensis encodes several proteins that
could participate in copper acquisition. These include two copC/D
genes (NVIE_014300 and NVIE_014310), two copT genes
(NVIE_012920 and NVIE_014090), two copA genes (NVIE_008380
and NVIE_012900), a copZ homolog (NVIE_012910), and a gene
encoding a putative copper storage protein (NVIE_028200). CopC/D
appears to encode a fusion protein composed of CopC, a putative
periplasmic Cu chaperone [58] and CopD, a cytoplasmic membrane
protein [59]. In Bacillus subtilis YcnJ, a CopC/D fusion protein, has
been hypothesized to bind Cu and transport it into the cytoplasm
[60,61]. Extensive bioinformatics analysis by Lawton et al. [62] of
bacterial and archaeal CopC protein sequences, showed that the
CopC/D fusion protein was the most prevalent type of CopC in
bacteria and archaea included in the analysis. CopA is a P1B-type,
CPTx type ATPase, that could be involved in the import of Cu in
Listeria monocytogenes [63], Pseudomonas aeruginosa Q9I147 [64]



Fig. 2. Nitrite concentrations in batch cultures of N. viennensis grown under Cu-replete and Cu-limited conditions as a function of the calculated free Cu2þ species concentration. The
data and error bars represent the average and standard deviation of multiple biological replicates (�4) from several experiments (see Table 2).

Fig. 3. The effect of Cu-limitation on growth of N. viennensis. Cultures were grown in batch at various Cu concentrations and the Cu-limited culture was spiked with 5 nM of Cu at
day 5 of exponential growth. The data points and error bars represent averages and standard deviations of three biological replicates from a single experiment.

Fig. 4. The effect of Cu-limitation on growth rates of N. viennensis. The data points and
error bars represent averages and standard deviations of multiple biological replicates
(�4) from several experiments (see Table 2).
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and/or export of copper in various bacteria [65,66] and archaea
[67,68], while copT [69] and copZ [70] are thought to act as tran-
scriptional regulators and chaperone proteins respectively. One of
these copper genes, copC/D (NVIE_014310), was a member of genes
that compose the core genome of AOA as described by Kerou et al.
[12]. The high number of genes encoding proteins that regulate Cu
uptake in N. viennensis implies a strong transcriptional regulatory
network e.g. CopTand CopZ, to combat copper stress. Contrastingly,
N. maritimus contains only one copC/D gene (Nmar_1652) and no
known homologs of copA, copT, copZ, or a copper storage protein.
The copC/D found in N. maritimus (Nmar_1652) is also the corre-
sponding copC/D found in the core genome of AOA.

Another possibility why the Cu threshold may differ between
these two species is that they might possess Cu transporters with
different binding affinities for free and inorganically complexed Cu.
This idea was proposed by Gwak et al. [35] in order to explain Cu-
threshold differences between various terrestrial, freshwater AOA
and AOB. However, this has yet to be experimentally shown.

The low copper levels used in this study are comparable to soil
environments with low copper. Copper (II) activities � 10�14 have
been determined for sandy soils from Nadec, Saudi Arabia [71] and
other soil types (W. Schenkeveld pers. comm.) through soil chem-
ical analysis and surface complexation modelling. Since the Cu-
limiting threshold for N. viennensis is estimated to
be � 10�15 mol L�1, it is possible that AOA could encounter Cu
concentrations in line with our experiments in such environments.
Exposure of AOA such as N. viennensis, that rely on Cu containing
enzymes for their metabolism, to soils with low free Cu2þ con-
centrations could be less efficient at oxidizing NH3/NH4

þ compared
to soils where Cu is more readily available. However, complemen-
tary field based studies, with different soil types, would have to be
made to test this hypothesis. It is also likely that AOA adapt to Cu
availabilities and thus exhibit different genotypes and ecophysiol-
ogies depending on their habitats. For example, Whitby et al. [37]



Fig. 5. Conceptual model of how Cu2þ could become limited in soil environments
through binding and uptake processes.
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found AOA similar to N. maritimus were thriving in marine waters
with free Cu2þ concentrations lower than the laboratory-based
concentrations measured by Amin et al. [34] for the pure culture,
which stemmed from an aquarium. Nevertheless, results from this
study and that of Amin et al. [34] serve as model systems to un-
derstand how individual factors such as free Cu2þ concentrations
can affect cell physiology and growth of different species of AOA.

Types of soils where Cu and other metals are limited include
neutral and alkaline soils. Under high pH conditions, increased
binding of metals to solid, organic matter [72] and inorganic soil
particles (e.g. clays and metal oxides) [73], and to dissolved organic
molecules (e.g. humic and fulvic acids) [72] or dissolved inorganic
molecules (e.g. sulfate, nitrate, phosphate) is known to occur.
Decreased availability of Cu and Fe in such soil environments could
be factors influencing AOA and AOB abundances or activities
(Fig. 5).

In contrast to alkaline soil environments, the affinity of Cu to
bind to soil particles is reduced and therefore it should be more
bioavailable [74]. In a study by Schaik et al. [75] Fe was shown to
outcompete Cu for binding sites to different types of soil organic
matter at low pH. Thus, in low pH soils, Fe could displace Cu from
certain types of organic matter making it more bioavailable.
Perhaps acidic soil environments where Cu is more bioavailable
than Fe, along with a physiological specialization of AOA under
acidic conditions [76e82] could offer a competitive advantage to
certain AOA over AOB. Increased Cu concentrations have been
shown to stimulate denitrification in wetland sediments [83],
thereby supporting the idea that Cu concentrations can influence
the abundance or activity of N cycling microorganisms with Cu
reliant enzymes.

Soils that are heavily weathered and eroded are also environ-
ments where metals such as Cu might be limiting. A recent study
found that in highly weathered soils from Western Australia, AOA
abundances were low compared to AOB [27]. However, it is not
clear if a lack of Cu was the only factor contributing to these dif-
ferences in abundances.

In summary, results from this study show that N. viennensis is
adapted to very low Cu concentrations. The organism showed
decreased ammonia oxidation ability at a free Cu2þ threshold as
low as 10�15 mol L�1. This threshold is considerably lower than the
one estimated for N. maritimus under similar experimental condi-
tions perhaps due to different uptakemechanisms between the two
species. In consequence, N. viennensis and related AOA can be active
even in alkaline soil environments where Cu is expected to be less
bioavailable. Future laboratory experiments should focus on testing
whether naturally occurring soil ligands such as humic acids have a
similar effect on the cell physiology of N. viennensis, i.e. reduce the
bioavailability of Cu such that N. viennensis becomes limited. More
integrated microbiology and geochemical studies are needed to
characterize the in situ activities of AOA and AOB in Cu-limited soils.
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