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In this study, we performed a detailed characterization of the siderophore metabolome, or “chelome,” of the agriculturally im-
portant and widely studied model organism Azotobacter vinelandii. Using a new high-resolution liquid chromatography-mass
spectrometry (LC-MS) approach, we found over 35 metal-binding secondary metabolites, indicative of a vast chelome in A.
vinelandii. These include vibrioferrin, a siderophore previously observed only in marine bacteria. Quantitative analyses of sid-
erophore production during diazotrophic growth with different sources and availabilities of Fe showed that, under all tested
conditions, vibrioferrin was present at the highest concentration of all siderophores and suggested new roles for vibrioferrin in
the soil environment. Bioinformatic searches confirmed the capacity for vibrioferrin production in Azotobacter spp. and other
bacteria spanning multiple phyla, habitats, and lifestyles. Moreover, our studies revealed a large number of previously unre-
ported derivatives of all known A. vinelandii siderophores and rationalized their origins based on genomic analyses, with impli-
cations for siderophore diversity and evolution. Together, these insights provide clues as to why A. vinelandii harbors multiple
siderophore biosynthesis gene clusters. Coupled with the growing evidence for alternative functions of siderophores, the vast
chelome in A. vinelandii may be explained by multiple, disparate evolutionary pressures that act on siderophore production.

Azotobacter vinelandii is a widespread nitrogen-fixing soil bac-
terium belonging to the Gammaproteobacteria. It is an estab-

lished, genetically tractable model organism for studies of nitro-
gen fixation and siderophore production (1). Siderophores are
Fe-chelating molecules that change the speciation of Fe in the
extracellular medium by outcompeting other natural ligands (2).
Uptake of the resulting Fe-siderophore complex via membrane-
bound receptors allows A. vinelandii to gain access to otherwise
sparingly soluble Fe (3–5). The Fe-siderophore complexes may be
unavailable to competing organisms and thus may exhibit
growth-inhibitory or antiphytopathogenic activities (6, 7). Several
studies have shown that the siderophores of A. vinelandii can also
bind metals other than Fe to enable uptake of additional metals
required in nitrogenases (Mo, V) (4, 8) or to sequester toxic heavy
metals (e.g., W, Zn) (9–11). The siderophores secreted by A.
vinelandii have also been found to support the growth of some
freshwater algae in coculture by providing a significant source of
nitrogen to these organisms (12).

The known siderophores of A. vinelandii include the fluores-
cent compounds azotobactin D and azotobactin � (13, 14) and the
catechol siderophores azotochelin (15), aminochelin (16), and
protochelin (3). These five siderophores have been discovered and
characterized over a span of about 30 years using primarily chem-
ical assays (17), which allow the analysis of only one or a few
siderophores at the same time due to limited sensitivity and sep-
aration power. Thus, it is possible that A. vinelandii produces
other, yet-unidentified siderophores.

A recent development in the discovery of siderophores is the
use of high-resolution liquid-chromatography electrospray ion-
ization mass spectrometry (HR-LC-MS) methods that exploit the
characteristic 54Fe-56Fe isotope pattern associated with organic Fe
chelates (18–20). Data mining techniques are available for filter-
ing the relevant Fe isotope patterns associated with Fe complexes
even at low abundances and in highly complex matrixes, as well as
for detecting the corresponding apo siderophores (18). Charac-
terization of the species thus discovered can then be achieved by
analysis of tandem MS (MS/MS) spectra and additional spectro-

scopic data (e.g., UV-visible [UV-vis] and nuclear magnetic reso-
nance [NMR]).

Parallel to Fe detection approaches, our understanding of sid-
erophore biosynthesis has increased immensely over the last de-
cade to the extent that bioinformatic mining of genomes can re-
veal gene clusters responsible for siderophore production,
although the exact chemical structure of the final products is often
difficult to predict (21–23). Nonribosomal peptide synthetase
(NRPS) genes involved in the production of the known azotobac-
tin and catechol siderophores have been identified in A. vinelandii
(24, 25).

In this study, we have combined bioinformatic analyses with
untargeted HR-LC-MS to discover siderophores and their biosyn-
thetic gene clusters in A. vinelandii. The results provide a number
of new insights. The �-hydroxycarboxylate siderophore vibriofer-
rin was observed in a terrestrial organism and detected at higher
concentrations than any of the other siderophores. In addition, a
large number of new derivatives of vibrioferrin, azotobactin, and
the catechol siderophores, some of which we assign by MS/MS
spectral networking methods, have been identified. Finally, func-
tional studies provide insights into possible roles of these sidero-
phores, which begin to explain why A. vinelandii carries multiple
siderophore biosynthetic gene clusters.
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MATERIALS AND METHODS
Bacterial cultures. Batch cultures of wild-type A. vinelandii strain CA
(also known as strain OP and ATCC 13705) were grown aerobically in a
modified Burk’s medium ([glucose] � 10 g liter�1; [mannitol] � 10 g
liter�1; [KH2PO4] � 5 mM; [K2HPO4] � 2.3 mM; [CaCl2] � 0.68 mM;
[MgSO4] � 0.41 mM; pH 6.7) under diazotrophic, Fe-limiting conditions
by shaking at room temperature (8). Fe bioavailability was controlled by
the addition of 100 �M EDTA and 0.1 �M FeCl3 in HR-LC-MS experi-
ments. Mo concentration ([Na2MoO4] � 1 �M) was higher than required
for optimal growth. Other trace metals were supplemented at optimal con-
centrations ([CuCl2] � 10�8 M; [MnCl2] � 2.25 � 10�7 M; [CoCl2] �
2.43 � 10�8 M; [ZnSO4] � 5.3 � 10�8 M) (8). To study the effect of Fe
sources, Fe was added as (i) 100 �M EDTA and 0.1 �M FeCl3, (ii) 100 �M
EDTA and 5 �M FeCl3, (iii) hematite, and (iv) freshly precipitated Fe
oxides. Other medium components remained the same as previously de-
scribed. Bacterial growth was monitored by measuring optical density at
620 nm (OD620).

Genome mining. The genome of A. vinelandii strain CA (GenBank
accession number CP005094) was analyzed for siderophores using the
secondary metabolite genome mining software AntiSmash (26), the gene
annotation software RAST (27), and targeted BLAST homology analyses.
The results were compared to those of previously published studies on
siderophore synthesis in A. vinelandii (24, 25). A concatenated amino acid
sequence corresponding to the entire PvsABCDE cluster in A. vinelandii
was used for vibrioferrin gene discovery in other publicly available ge-
nomes based on a tBLASTn search of the NCBI database.

HR-LC-MS and siderophore metabolomic analyses. (i) Sample
preparation. For untargeted siderophore profiling, stationary-phase cul-
tures were first collected by centrifugation. The supernatant was filtered,
first with a 0.22-�m filter and then with a 3-kDa-cutoff Amicon Ultra
ultrafiltration device. Trifluoroacetic acid (TFA) was added to a final con-
centration of 0.03% (vol/vol) before solid-phase extraction (SPE). After
loading, the column (Oasis HLB, 200 mg; Waters) was washed with TFA
(0.03% in water) and then formic acid (FA; 0.03% in water), followed by
elution with 50% and 100% methanol (MeOH) in water. For further
analyses, the two extract fractions were combined. Sterile culture medium
was extracted in the same way and used as a blank. Biological control
samples extracted under oxygen-free conditions in an anaerobic glove box
(Coy chamber) were harvested during early growth (OD620 � 0.10). Ox-
ygen concentrations in the culture medium were near the detection limit
(0.01 to 0.02 mg liter�1 with a Hach HQ40d oxygen electrode) before
extraction. Solvents used for these anaerobic extractions were degassed to
reach oxygen levels below the detection limit. A control sample was ex-
tracted in the same way as described above, and another control sample
was extracted without the TFA or FA additions, at neutral pH. Concen-
trated methanolic extracts were dried in a SpeedVac (ThermoFisher) and
reconstituted with aqueous mobile-phase buffer prior to LC-MS analyses.

(ii) HR-LC-MS measurement. HR-LC-MS analyses were performed
on a high mass accuracy and resolution, reversed-phase high-pressure
liquid chromatography (HPLC)-MS platform, using a C18 column (ACE
3 C18-AR, 1 mm by 10 cm; MAC-MOD) coupled to an LTQ-Orbitrap XL
hybrid mass spectrometer (ThermoFisher). Injected samples (5 �l) were
separated (1 h) under a gradient of solutions A and B (solution A consisted
of water, 0.1% FA, and 0.1% acetic acid; solution B consisted of acetoni-
trile, 0.1% FA, and 0.1% acetic acid; gradient, 0 to 100% B; flow rate, 50
�l/min). The control samples were additionally measured using an am-
monium acetate (NH4OAc) mobile-phase buffer (pH 5.0) with the same
gradient (solution A, 5 mM NH4OAc in water; solution B, 5 mM NH4OAc
in acetonitrile). To resolve some coeluting compounds, the control sam-
ples were run with a nanoflow capillary ultrahigh performance LC system
(Nano Ultra 2D Plus; Eksigent, Dublin, CA) coupled to the same LTQ-
Orbitrap XL mass spectrometer. These control samples (7 �l) were loaded
for a period of 30 min, followed by 1 h of separation over the analytical
capillary column (capillary, 75 �m by ca. 25 cm, packed with Magic AQ 3
�m C18 resin). Full-scan mass spectra were acquired in positive-ion mode

(m/z � 153 to 1,500) with an experimental resolving power (R) of 60,000
(m/z � 400). MS/MS spectra were simultaneously acquired using colli-
sion-induced dissociation (CID) in the Orbitrap using a parent ion inten-
sity threshold of �10,000 and targeting the three most abundant species
in the full-scan spectrum or selectively only predefined species on a parent
ion list.

(iii) Data processing and analysis. For a schematic representation of
the LC-MS analysis workflow, see Fig. 1. The HR-LC-MS data set was
filtered for the characteristic 54Fe-56Fe isotope pattern that is associated
with Fe complexes using the software ChelomEx (18). The desired Fe
complexes (e.g., [M-2H		Fe3	]	 or [M-H		Fe2	]	) coeluted with
species that had m/z values corresponding to the free siderophore (MH	)
and were present at intensities about 100 to 1,000 times higher than the Fe
complex. To achieve high sensitivity in the detection of Fe chelates, we applied
a filter that required the presence of at least 1 matched isotope pattern (
m/z
54Fe-56Fe � �1.9953 � [0.0015 	 2 ppm], relative intensity 54Fe/56Fe �
0.064 [0.03 to 0.09]) around the apex of the peak and coelution of the Fe
complex with the free ligand [for Fe(III), 
m/z � �53.91928 � (0.0015 	
2 ppm); for Fe(II), 
m/z � �52.91145 � (0.0015 	 2 ppm)]. To collect
MS/MS spectra of possible siderophores, a parent ion list was generated
using an extended list of possible siderophores by including also species
that may not have shown an identified Fe isotope pattern because the 54Fe
intensity was below the detection limit but still showed coelution with
species corresponding to the possible free ligand, whereby the intensity of
the free ligand had to exceed that of the Fe complex more than 5-fold. The
results were examined manually, and the free ligands of all species discov-
ered as possible siderophores were included in the parent ion list for
high-resolution MS/MS data acquisition in replicate runs. In further anal-
yses, only those species were considered that were present in three repli-
cate runs and also in biological replicate controls, extracted under exclu-
sion of oxygen in the glove box, but not in the blank medium extract. Most
known siderophores fall into a mass range between 400 and 1,500 atomic
mass units (amu) (23). While we observed several unknown Fe chelators
with molecular masses of �400 amu, they formed Fe complexes with two
or more ligands and included also apparent mixed-ligand complexes. The
binding of these species is less specific than those of true siderophores, and
they may include, for example, fatty acids or amino acids. For this reason,
we excluded species with molecular masses of �400 amu from further
analysis.

MS/MS molecular networks. MS/MS spectra with the same parent
ion mass (�5 ppm or 0.0025 amu) were averaged and denoised, and the
13C isotopes were removed. All species selected for calculation of the net-
work had significantly different retention times. Coeluting species were
manually examined, and possible adducts (e.g., Na or K adducts), dimers,
or apparent in-source fragmentation products were removed. The net-
work was then generated by modification of methods previously de-
scribed by Dorrestein and coworkers to adapt to high-resolution MS/MS
spectra (28–30). Briefly, cosine scores were calculated for pairwise aligned
MS/MS spectra reflecting similarity whereby 1 and 0 indicate identical
spectra and no similarity, respectively. Two MS/MS peaks were matched if
they had the same high-resolution mass (�0.005 amu) or if their masses
differ exactly by the mass difference of the two parent ions (�0.005 amu).
Only fragments with an m/z difference of �50 to the parent ion were used
so as to exclude unspecific losses (e.g., H2O or NH3) while including, for
example, a loss of the lightest amino acid, alanine. A database of known
siderophore structures assembled previously (23) was used to match the
masses of molecules and their MS/MS fragments (�5 ppm or 0.005 amu)
and to reconstruct MS/MS spectra.

Targeted siderophore quantification during growth. Targeted quan-
tification of siderophores was performed on a single quadrupole LC-MS
system (Agilent 6120) equipped with a UV-vis spectrometer, in single-ion
monitoring (SIM) mode. Sample aliquots of 1 ml were taken throughout
the growth, sterile filtered through 0.2-�m syringe filters, and stored at
�20°C until analysis. Prior to analysis, the samples were acidified with
0.1% acetic acid and 0.1% FA. Without further purification (no solid-
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phase extraction), 100-�l sample aliquots were injected onto a C18 col-
umn (Agilent Eclipse Plus C18 3.5 �m, 4.6 by 100 mm) equipped with a
matching guard column. The separation proceeded with the same mobile-
phase system as the one described above for HR-LC-MS analyses (solu-
tion A, water– 0.1% FA– 0.1% acetic acid; solution B, acetonitrile– 0.1%
FA– 0.1% acetic acid) over 30 min, at a flow rate of 0.8 ml/min. Using a
6-port valve, the column outflow was diverted to waste for the first 5.25
min, ensuring that the sample was completely desalted before introduc-
tion into the mass spectrometer. For quantification, LC-MS and UV-vis
peak areas were determined using MassHunter software (Agilent). Rela-
tive elution times of the peaks on this system were matched to the elution
times for the siderophores determined on the HR-LC-MS system. Peak
areas were converted to concentrations by calibration with isolated stan-
dards of vibrioferrin, 2,3-dihydroxybenzoic acid (DHBA), azotochelin,
protochelin, and azotobactin �. The concentrations of minor derivatives
were estimated using the LC-MS response determined for the structurally
closely related major siderophores. Seven technical replicates of a spent
medium “standard” collected in the stationary phase from a culture
grown under the same conditions as the samples used for HR-LC-MS
analysis (100 �M EDTA and 0.1 �M FeCl3) showed relative standard
deviations of �3.5% for the vibrioferrins and the major catechol sidero-
phores. The remaining siderophores were measured with slightly larger
standard deviations (�10% for siderophore concentrations above 0.5 �M
and �20% for lower concentrations).

Siderophore isolation and quantification. Isolation of siderophores
was achieved by filtration and solid-phase extraction (Oasis MAX or Oasis

HLB) of culture media followed by HPLC purification with a C18 column.
The pooled fractions were lyophilized and reconstituted with D2O
(vibrioferrin, aminochelin) or deuterated MeOH to obtain 1H-NMR and
correlation spectroscopy (COSY) spectra (Bruker Avance III 500MHz).
Quantification of the isolated siderophore standards was performed by
1H-NMR with internal standard addition of sodium benzoate for vibrio-
ferrin or by UV-vis using reported extinction coefficients for acidified
solutions of DHBA, aminochelin, azotochelin, protochelin, and azoto-
bactin (5, 31).

RESULTS
Bioinformatic analyses of the A. vinelandii siderophore metabo-
lome. We began by mining the genome of A. vinelandii strain CA
(also known as OP; GenBank accession number CP005094.1) for
siderophore biosynthetic genes and found a total of 9 NRPS genes
and 2 NRPS-independent siderophore synthetase genes arranged
across 5 clusters (Fig. 2; see also Table S1 in the supplemental
material). Two of these clusters (AvCA_21160 to AvCA_21230
and AvCA_25530 to AvCA_25660) contain NRPS genes previ-
ously shown to be necessary for the production of catechols and
azotobactin (24). Closer analysis of AvCA_09300 to AvCA_09360,
one of the three new gene clusters, indicated that it possibly en-
codes the synthesis of a vibrioferrin-like compound, an �-hy-
droxycarboxylate siderophore characteristic of marine bacteria

FIG 1 Schematic of the LC-MS analysis workflow in this study. For untargeted siderophore profiling (“chelomics”), sample preparation and measurement on
a high-resolution LC-MS system were followed by mining of the LC-MS data for characteristic Fe isotope patterns associated with Fe complexes and the presence
of associated Fe-free ligand species using ChelomEx software (18). MS/MS molecular networks of identified putative free siderophores were created to group
structurally related species and assign mass differences between related species to sum formula differences. Identification of new siderophores was assisted by
comparison of molecule and fragment masses to a database of known siderophore structures. Finally, manual reconstruction of MS/MS spectra allowed the
assignment of chemical structures to several new siderophore structures. In some cases, the structure assignment was informed by additional NMR spectra of
isolated compounds. Quantification of identified siderophores was performed on a single quadrupole LC-MS by direct injection of filtered spent media without
prior solid-phase extraction (SPE).

Siderophore Function and Diversity in A. vinelandii

January 2016 Volume 82 Number 1 aem.asm.org 29Applied and Environmental Microbiology

 on M
arch 8, 2018 by N

orth C
arolina S

tate U
niversity Libraries

http://aem
.asm

.org/
D

ow
nloaded from

 

http://www.ncbi.nlm.nih.gov/nuccore?term=CP005094.1
http://aem.asm.org
http://aem.asm.org/


such as Vibrio parahaemolyticus (32). Bioinformatics-based pre-
dictions of the specific siderophores produced by AvCA_09680
and AvCA_09690 are less clear; however, homology searches and
the domain structure of these NRPS genes hint at an involvement
in the later stages of protochelin biosynthesis (see below). The
product of the last gene cluster, containing an MbtH-encoding
gene (AvCA_50380) and an NRPS possessing only a single do-
main (AvCA_50370), is not known.

Discovery of unknown siderophores from A. vinelandii. To
examine the product(s) of the A. vinelandii siderophore metabo-
lome, we cultured A. vinelandii strain CA under diazotrophic and
Fe-limited conditions, which have previously been shown to stim-
ulate siderophore production (8). Initial mining of the HPLC-MS
data for the 54Fe-56Fe isotope pattern associated with Fe(III)
or Fe(II) siderophore complexes ([M-2H		Fe3	]	 or [M-
H		Fe2	]	) and their related free ligands (MH	) according to
the scheme described in Fig. 1 revealed all previously known sid-
erophores (shown in green in Fig. 3), but also a large number of
other possible Fe-chelating agents. The Fe complexes of all species
coeluted with their corresponding apo ligands, which were signif-
icantly more abundant than the Fe complexes as expected from
the acidic (pH 
2.5) and low-Fe conditions used for chromatog-
raphy.

Among the most abundant Fe chelators were species that
matched the m/z values of the known siderophores produced by A.
vinelandii CA, i.e., the fluorescent siderophores azotobactin D and
azotobactin �, as well as the catechol siderophores aminochelin,
azotochelin, and protochelin (in green in Fig. 3). The identity of
these known siderophores was further established by their MS/MS
fragmentation patterns (see Fig. S1 in the supplemental material).
Moreover, we found a large number of high-abundance Fe chela-
tors with as-of-yet unassigned structures. Together, over 35 sid-
erophores were reproducibly found in three biological replicates.

These include hydrophilic siderophores, previously not reported
in A. vinelandii (shown in red in Fig. 2), as well as new derivatives
of old siderophores (shown in orange in Fig. 3).

Siderophore molecular networks: identification of vibriofer-
rins, azotobactins, and catechol siderophores. To obtain an
overview of the structural similarity and diversity among A.
vinelandii siderophores, we collected HR-MS/MS data for each
compound and created a spectral network, an approach recently
pioneered by the Dorrestein group (29). In this network, each
node represents an individual siderophore (adducts, dimers, etc.,
were manually removed), while lines connecting the nodes repre-
sent commonalities in MS/MS fragmentation (Fig. 4A). The net-
work revealed three groups of compounds structurally related to
azotobactins, catechol siderophores, and vibrioferrin, a sidero-
phore previously not observed in A. vinelandii.

Vibrioferrin cluster. The most prominent peak in the vibrio-
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ferrin group of compounds was a hydrophilic Fe chelator that had
the same mass as the siderophore vibrioferrin (33), which has
previously been detected only in marine bacteria (m/z � 435.125)
(Fig. 4B). Purification of this siderophore and subsequent analysis
by MS/MS and NMR (1H-NMR and COSY) confirmed its identity
(see Fig. S2 in the supplemental material). This assignment is con-
sistent with bioinformatic analysis of the A. vinelandii genome,
which reveals a conserved pvs gene cluster (AvCA_09300 to
AvCA_09360), responsible for vibrioferrin biosynthesis in V.
parahaemolyticus (34) (Fig. 2; see also Fig. S2 in the supplemental
material). Vibrioferrin is likely assembled from citrate, Ala, etha-
nolamine (derived from Ser), and �-ketoglutarate (35). We iden-
tified two new derivatives, one where the Ala precursor was re-
placed with Ser (vibrioferrin B), and another bearing a methyl
ester within the citrate substructure (vibrioferrin C). The struc-
tural assignment of these analogs is based on HR-MS/MS data and
on isotopic feeding experiments with L-[3,3,3-2H3]Ala, which re-
sulted in a 3-Da mass shift with vibrioferrins A and C, but not B,
consistent with the structures shown in Fig. 4B (see Fig. S3 in the
supplemental material). These new derivatives are consistent with
precursor flexibility and post-synthetic tailoring in the vibriofer-
rin biosynthetic pathway.

Catechol cluster. In addition to the known catechol sidero-
phores, the HR-LC-MS data revealed a number of derivatives that
differed by simple chemical modifications (�O; �2H; CH2

groups). Larger differences corresponded to addition or loss of a
dihydroxybenzoyl group (C7H4O3, 
m � 136.013) or an amino-
chelin group (C11H14O3N2, 
m � 222.100), the building blocks of
azotochelin and protochelin. Based on MS/MS data, structures
could be assigned to several noteworthy derivatives of protoche-
lin, which we denote protochelin B through G (Fig. 4C; see also
Fig. S4 to S6 in the supplemental material). For protochelin B, we
detected a mass difference (
m/z) of 14.016 relative to protochelin
A for both the parent ion and some of its fragments, indicative of
a loss of CH2. Manual analysis of the MS/MS data revealed that the
modification was located in the CH2 chain of the aminochelin
residue in protochelin as indicated by red circles in Fig. 4C (see
also Fig. S4A in the supplemental material). Protochelins C to E,
with m/z of 489.234, were assigned as analogs without a dihy-
droxybenzoyl group (DHB) (see Fig. S4B in the supplemental ma-
terial). Three chromatographic peaks, each associated with differ-
ent MS/MS fragmentation patterns, corresponded to the three
structural isomers in which the DHB is missing in each of the three
possible positions of protochelin. One of these analogs, protoche-
lin C, is shown in Fig. 4C. MS data for protochelin F showed that
it lacked two hydrogens relative to protochelin A. UV-vis spectra
showed peak absorbances at � of 330 nm in protochelin and in
protochelin F, indicating that the structural change in the new ana-
logue was not associated with an extended �-electron system. In-
stead, the aromatic substitution pattern inferred from 1H-NMR spec-
tra showed that the new compound was characterized by cross-linked
catechol rings in agreement with the MS/MS spectra (see Fig. S5 and
S6 in the supplemental material). The structure for the most promi-
nent peak, protochelin F, is shown in Fig. 4C. A similar compound,
protochelin G, with a different aromatic substitution pattern, was
also isolated (see Fig. S6 in the supplemental material).

Azotobactin cluster. In the azotobactin network, several
prominent siderophores had a larger mass than the known azoto-
bactins (azotobactin � and azotobactin D). The structure of azo-
tobactin � (m/z for [M 	 2H]2	 � 697.261, z � 2) is characterized

by a dihydroxyquinoline chromophore and a peptide chain with a
homoserine-lactone at the terminus of the peptide chain, which
are marked in orange and green, respectively, in Fig. 4D. Azoto-
bactin D (m/z for [M 	 2H]2	 � 706.266) has the same structure
as azotobactin �, with a terminal homoserine instead of the ho-
moserine-lactone. The masses of the newly identified azotobactin
derivatives match the masses of putative azotobactin precursors,
which are characterized by modifications of the chromophore
with a glutamic acid side chain. These structures have been sug-
gested to occur in the following oxidative cascade in pseudomon-
ads: ferribactin ¡ hydroxyl-ferribactin ¡ dihydropyoverdine ¡
pyoverdine ¡ azotobactin (36–38) (Fig. 4D). Changes in the pu-
tative chromophore structures were also in agreement with ex-
pected shifts in the UV-vis spectra. The hydroxyl-ferribactin �
(m/z for [M 	 2H]2	 � 750.807) was the most abundant azoto-
bactin derivative in this study. All azotobactin derivatives in Fig.
4D had the same peptide chain as the previously known azotobac-
tins and a structural change in the chromophore with an addi-
tional glutamic acid side chain. An exception is a compound with
an additional CH2 group (m/z for [M 	 2H]2	 � 713.274), which
we denote azotobactin D2. MS/MS spectra indicated that the ad-
ditional CH2 was located at the homoserine end of azotobactin
D2, likely representing a methyl ester or methyl ether derivative of
homoserine (in green in Fig. 4D).

Pyoverdines, siderophores produced by pseudomonads,
chemically closely related to azotobactins, show a remarkable di-
versity in their peptide structures between species and strains (e.g.,
Pseudomonas aeruginosa [39]), which is encoded by the NRPS
genes. Nonetheless, in the three closely related A. vinelandii strains
that have been sequenced (DJ, CA, CA6) (1, 40), the NRPS genes
are 100% identical.

Siderophore production during growth. Why does A. vinelan-
dii simultaneously produce three structurally distinct groups of
siderophores? We sought to answer this question by studying the
effects of different Fe sources on siderophore production. A.
vinelandii was cultured under diazotrophic conditions with four
different sources of Fe: condition 1, 0.1 �M Fe with 100 �M
EDTA, i.e., the same conditions used for HR-LC-MS siderophore
discovery; condition 2, 5 �M Fe with 100 �M EDTA; condition 3,
hematite; and condition 4, freshly precipitated amorphous Fe ox-
ide. We quantified siderophores by direct injection on a quadru-
pole LC-MS without prior solid-phase extraction, thus avoiding
possible analytical errors from low analyte recoveries or precon-
centration artifacts.

Under conditions 2 and 4, the cells grew rapidly and reached
high optical densities (OD) after 3 days, while slow growth and
low maximum OD indicated severe Fe limitation under condi-
tions 1 and 3 (Fig. 5). Vibrioferrin A was the major siderophore
under all tested growth conditions, present at 4 to 14 times the
concentration of any of the other siderophores (Fig. 5). Vibriofer-
rin A was detected at particularly high concentrations in the late
exponential growth phase under condition 2 (high Fe with
EDTA), reaching concentrations up to 360 �M. Vibrioferrin de-
rivatives were present at 
10 times lower concentrations (vibrio-
ferrin B, 3 to 11 �M; vibrioferrin C, 0 to 4 �M). The abundant
production of vibrioferrins under condition 2 (high Fe with
EDTA) was followed by a rapid production of aminochelin and
azotochelin, which reached final concentrations of 60 and 75 �M,
respectively. In contrast, when cells were grown with highly avail-
able amorphous Fe oxide, aminochelin and azotochelin concen-
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trations remained very low (�1.5 �M), while intermediate con-
centrations (7 to 10 �M) were reached under conditions of severe
Fe limitation (added 0.1 �M Fe with 100 �M EDTA or added
hematite). Interestingly, the production of protochelin was re-
markably insensitive to the Fe source, possibly due to its role as a
metallophore for Mo (8), which was added at a concentration
close to the observed maximum protochelin concentrations in all
treatments ([Mo] � 1 �M). The most abundant protochelin de-
rivative, protochelin D, was found at concentrations similar to
those of protochelin A (
1 �M), but it was not formed under
condition 4. Azotobactins and related compounds were observed
only under severe Fe limitation (conditions 1 and 3), in agreement
with previous observations (4, 41). Azotobactins D and � reached
concentrations of �1 �M. The newly identified azotobactin-re-
lated siderophores hydroxyl-ferribactin � and hydroxyl-ferribac-
tin D were present at concentrations of up to 2 �M. The hydroxyl-
ferribactins were detected at higher concentrations than the
azotobactins under condition 3 (hematite) but at lower concen-
trations under condition 1 (low Fe with EDTA).

The relative timings of production of each siderophore were
roughly similar under all conditions: (i) protochelin synthesis oc-
curred during the initial lag and early growth phase, (ii) massive
vibrioferrin production occurred after an initial fast growth phase,
and (iii) production of aminochelin, azotochelin, and the known
azotobactins occurred starting late in the initial rapid growth
phase and continuing in the later growth phase. The major azoto-
bactin derivatives, hydroxyl-ferribactin � and hydroxyl-ferribac-
tin D, increased earlier than the known azotobactins. Production
of vibrioferrins B and C followed that of vibrioferrin A, while the
protochelin derivatives peaked later than protochelin A. These
results provide some clues regarding the role of each siderophore
and have implications for the ability of bacteria to synthesize nu-
merous siderophores, as discussed below.

DISCUSSION

Complete descriptions of siderophore metabolomes are a neces-
sary precondition to address successfully the important and out-
standing question of why microorganisms produce simultane-
ously a large set of distinct siderophores and why this set is
different in different species. By exploiting state-of-the-art HR-
LC-MS analysis combined with new data processing techniques, this
study provides the most complete analysis to date of siderophores
produced by any microorganism. Aside from the previously known
azotobactins and catechol siderophores, we have identified the pres-
ence of additional, abundant, and previously unreported sidero-
phores produced by A. vinelandii, including the hydrophilic vibrio-
ferrin and its derivatives as well as analogs of azotobactin,

azotochelin, protochelin, and aminochelin (see Table S2 in the
supplemental material). These findings raise questions regarding
the biosynthetic origins and possible functions of the new sidero-
phores.

Vibrioferrin production by A. vinelandii and other bacteria.
Vibrioferrin is the siderophore produced at the highest concen-
tration under all tested conditions (diazotrophic growth with var-
ious sources and availabilities of Fe), even though it has not been
detected previously in the A. vinelandii growth medium (Fig. 5).
One possible explanation is that vibrioferrin is more hydrophilic
than the previously known A. vinelandii siderophores and might
not be retained by some reversed-phase extraction protocols.
Vibrioferrin production was first observed in V. parahaemolyticus
and since then has been found in several marine bacteria, includ-
ing Marinobacter symbionts of dinoflagellates (42, 43). Our study
provides an example of vibrioferrin production outside the ma-
rine environment. Genomic analysis for pvs genes, previously
shown to be responsible for vibrioferrin biosynthesis (32), reveals
striking conservation of the pvsABCDE gene cluster in bacteria
from multiple phyla, environments, and lifestyles (Fig. 6). These
genes are found primarily in Gammaproteobacteria, including sev-
eral nonmarine organisms that are free-living or pathogenic.
Thus, the potential for vibrioferrin production is more wide-
spread than previously recognized. Additionally, the presence of
pvs genes on a plasmid of Ralstonia eutropha, a betaproteobacte-
rium, suggests that bacterial conjugation may be a mechanism for
horizontal transfer of vibrioferrin genes.

In A. vinelandii, vibrioferrin production was particularly pro-
nounced during the late exponential-growth phase in media with
high initial added Fe (5 �M) and an excess of EDTA (100 �M)
(condition 2 [Fig. 5]). Under the same condition, we also observed
the highest concentrations of aminochelin and azotochelin. This
strong coproduction of vibrioferrin, aminochelin, and azotoche-
lin during the late exponential phase likely reflected the low
concentrations of available Fe related to the slow dissociation
of the Fe-EDTA complex, which cannot keep up with the de-
mands of the multiplying bacterium (44, 45). Our finding of
abundant vibrioferrin production outside a marine environ-
ment and without light indicates that Fe is made available to
bacteria via mechanisms other than the previously suggested
photoreduction of Fe-vibrioferrin (42, 43). Vibrioferrin is hy-
drophilic and a weak Fe chelator (pFe � �log [Fe3	] � 18.4
with [vibrioferrin] � 10�5 M, [Fe] � 10�6 M, pH 7.4) (43).
The strong coproduction of the weak, hydrophilic, and con-
centrated vibrioferrin with the stronger, more hydrophobic,
and less concentrated azotochelin (pFe � 23.1 [31]) may be

FIG 4 (A) MS/MS molecular network of siderophores produced by A. vinelandii. Each node represents a separate siderophore (adducts, dimers, etc., have been
removed) that was required to be present in biological and analytical replicates. The thickness of the edge represents the degree of relatedness between the MS/MS
spectra of two species. The known siderophores from A. vinelandii are indicated as black circles, and vibrioferrin is indicated as a yellow circle. Three separate
clusters can be recognized and include vibrioferrin, catechol siderophores, and azotobactins. The software Cytoscape was used for visualization. (B, C, D) Nodes
in the three clusters shown in more detail. For these networks, nodes were manually arranged, and only selected edges are shown for clarity of presentation. The
ring color around the nodes represents the peak area for each species, and the number represents the corresponding m/z value (rounded to one digit). The exact
mass difference between two nodes was assigned to chemical sum formulas as indicated. Structures of new siderophores are based on reconstruction of MS/MS
spectra and additional UV-vis and NMR spectroscopic data (see the text). The table in panel D shows the MS/MS fragmentation of azotobactin-related
compounds. Arrows indicate MS/MS fragments corresponding to the B (arrows to the left) and Y (arrows to the right) fragment ions; �max is the absorption
maximum of each compound in the UV-vis spectrum. Note that all siderophore species in the azotobactin cluster were doubly charged. ChrA, azotobactin
chromophore; Febn, ferribactin; OHFebn, hydroxyl-ferribactin; ChrP, pyoverdine chromophore; 2HChrP, dihydropyoverdine; Ser, serine; Glu, glutamate; Hse,
homoserine; Gly, glycine; OHAsp, hydroxyl aspartate; Cit, citrulline; AcOHOrn, acylhydroxyornithine; Hsl, homoserine lactone; MeHse, methylhomoserine;
nd, not determined.
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required in a “bucket brigade” mechanism that involves bind-
ing of Fe by vibrioferrin in the bulk medium and exchange with
a hydrophobic siderophore that delivers Fe to the cell (46, 47).
As such, the disparate siderophores would act synergistically in

the acquisition of Fe (48). Notably, several bacteria with vibrio-
ferrin biosynthetic genes (shown in Fig. 6) can potentially also
produce other, structurally unrelated siderophores, which may
be used in a bucket brigade mechanism.

0

1

2

O
D

62
0

* Vibrioferrin

* Vibrioferrin B

* Vibrioferrin C

Incubation time (d)

0

0.2

0.4
Azotobactin D 

0

0.5

1.0
Azotobactin δ 

0

0.5

1.0

1.5
** Hydroxyl-ferribactin D

0

1

2
** Hydroxyl-ferribactin δ

0

0.1

0.2
** Pyoverdine D

0 5 10 15
0

0.05

0.1
** Pyoverdine δ 

Incubation time (d)

0

5

10
DHBA

0

50

Aminochelin

0

50

100
Azotochelin

0

0.5

1.0

1.5
Protochelin

0

0.005

0.01

* Protochelin B

0 5 10 15
0

0.05

Incubation time (d)

* Protochelin C

(1) Low Fe (EDTA buffered)

(3) Hematite 

(2) High Fe (EDTA buffered)

(4) Amorphous Fe oxides

Growth curves Vibrioferrin related Azotobactin related Catechol siderophores

0 5 10 15

Incubation time (d)

0

0.5

1.0

1.5
* Protochelin F

0

200

400

0

5

10

15

0 5 10 15
0

2

4

6

C
on

ce
nt

ra
tio

n 
(µ

M
)

C
on

ce
nt

ra
tio

n 
(µ

M
)

C
on

ce
nt

ra
tio

n 
(µ

M
)

C
on

ce
nt

ra
tio

n 
(µ

M
)

C
on

ce
nt

ra
tio

n 
(µ

M
)

C
on

ce
nt

ra
tio

n 
(µ

M
)

C
on

ce
nt

ra
tio

n 
(µ

M
)

C
on

ce
nt

ra
tio

n 
(µ

M
)

C
on

ce
nt

ra
tio

n 
(µ

M
)

C
on

ce
nt

ra
tio

n 
(µ

M
)

C
on

ce
nt

ra
tio

n 
(µ

M
)

C
on

ce
nt

ra
tio

n 
(µ

M
)

C
on

ce
nt

ra
tio

n 
(µ

M
)

C
on

ce
nt

ra
tio

n 
(µ

M
)

C
on

ce
nt

ra
tio

n 
(µ

M
)

C
on

ce
nt

ra
tio

n 
(µ

M
)

FIG 5 Concentration of notable siderophores from A. vinelandii under diazotrophic growth with different sources and availability of Fe. Growth was monitored
by optical density at 620 nm (OD620). * and ** indicate new A. vinelandii siderophores identified in this study. Double asterisks represent azotobactin derivatives
based on MS/MS fragmentation patterns as shown in Fig. 3. Relative standard deviations were �3.5% for the vibrioferrins and the major catechol siderophores
based on replicate analyses of a representative spent medium “standard.” The remaining siderophores were measured with slightly larger standard deviations
(�10% for siderophore concentrations above 0.5 �M and �20% for lower concentrations).
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FIG 6 Occurrence of vibrioferrin biosynthetic genes (pvs) in bacteria from diverse phyla, environments, and lifestyles. Information on gene loci is displayed
below each arrow. GenBank accession numbers for genomes shown (in order) are BA000032.2, CP006265.1, CP005094.1, CP010415.1, CP003057.1,
CP000744.1, CP006664.1, CP000316.1, AY305378.1, CP001114.1, and BA000030.3. *, aldolase has been shown to be citrate synthase in Staphylococcus produc-
tion of staphyloferrin B (60).
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When grown with amorphous Fe oxide (condition 4), A.
vinelandii grows as fast, and reaches the same OD, as with high Fe
and EDTA (condition 2), but the siderophore pool consists almost
exclusively of vibrioferrin and DHBA, with aminochelin and azo-
tochelin at very low levels. Notably, both vibrioferrin (pKa values
of 5.1, 3.6, and 2.7 [43]) and DHBA (pKa � 2.9) are negatively
charged at the experimental pH (pH 6.9), unlike aminochelin
(pKa values of 7.1, 10.2, and 12.1 [49]), the other hydrophilic
siderophore of A. vinelandii, which is positively charged. The neg-
ative charge of vibrioferrin and DHBA favors adsorption on pos-
itively charged Fe-oxyhydroxides (at pH �8), which may help in
the dissolution of Fe and explain their elevated production com-
pared to that of all other siderophores under condition 4. Thus, it
appears that A. vinelandii can tailor its siderophore metabolome
to existing sources of Fe in the environment.

Siderophore derivatives: artifacts, spontaneous reactions, or
biosynthesis? The LC-MS analysis reveals new structural varia-
tions for vibrioferrin and the previously described A. vinelandii
siderophores (Fig. 3 to 5). These related species were present at
lower concentrations and may principally result from method-
ological artifacts, spontaneous reactions, or targeted biosynthesis.
Methodological artifacts may potentially occur during sample
preparation or LC-MS measurements, including (i) inadvertent
oxidation, (ii) reactions due to acidification, (iii) reactions during
the reversed-phase extraction, and (iv) reactions during ioniza-
tion. To rule out oxidation or acidification, we performed control
experiments in the absence of oxygen and at pH 5 instead of pH
2.5 by omitting sample acidification during solid-phase extraction
and by using an ammonium acetate buffer (pH 
5) during LC-
MS. All the derivatives shown in Fig. 4 were observed under anoxic
conditions and at the higher pH, except for azotobactins and their
derivatives, which were not retained on the solid-phase column or
did not ionize at pH 5. The possibility of new species being caused
by reversed-phase extraction is ruled out by the observation of
many of the same derivatives via direct injection of the filtered
medium into the LC-MS. Finally, species caused by reactions dur-
ing the electrospray ionization process should coelute in the
LC-MS chromatogram. Yet we observed separated chromato-
graphic peaks for the siderophores shown in Fig. 4 (see also Table
S2 in the supplemental material). Thus, potential methodological
artifacts could clearly not explain the observed derivatives of the
major A. vinelandii siderophores, and these are generated by spon-
taneous reactions or in an enzyme-dependent, “deliberate” fash-
ion by the bacteria.

Derivatives of the catechol siderophores: biosynthesis and
spontaneous reactions. The group of catechol siderophores is
particularly diverse, and their biosyntheses have been well studied.
We therefore bioinformatically investigated the production of the
catechol siderophores. Analysis of the ent gene cluster, previously
shown to be involved in catechol biosynthesis (cluster 1,
AvCA_21180 to AvCA_21230 [Fig. 7A]), suggests that additional
genes are required for production of aminochelin and protochelin
(24, 25). This cluster can account for production of an EntB-
bound DHB-thioester (Fig. 7B). Production of aminochelin from
this intermediate requires incorporation of butane-1,4-diamine
(putrescine), a reaction analogous to that catalyzed by VibH, an
amide synthase from Vibrio cholerae that combines the polyamine
norspermidine with DHB-thioesters in vibriobactin biosynthesis
(50). A closer examination indeed indicates the presence of a
VibH-like enzyme, which has 41% similarity (21% identity) to the

V. cholerae VibH adjacent to the ent gene cluster (AVCA_21160)
(Fig. 7A). Thus, a model can be proposed for production of ami-
nochelin A (Fig. 7B). In an analogous fashion, aminochelin B
would be generated from the same EntB-bound DHB intermedi-
ate and propane-1,3-diamine (Fig. 7B, dashed line 1), similar to
the biosynthesis of serratiochelins, which also utilizes propane-
1,3-diamine (51). Both diamines are well known and among the
dominant forms in bacteria (52, 53). Thus, a single VibH-like
homolog may incorporate several polyamines, consistent with
previous in vitro studies on VibH (50).

For the bioproduction of the bis-catachol azotochelin, we pre-
dict that the large NRPS encoded by entF (AvCA_21190) catalyzes
condensation of a T-domain-bound Lys with the DHB-thioester
(Fig. 7C). Subsequent release from the assembly line via the ter-
mination (TE) domain would furnish azotochelin. On the other
hand, the biosynthesis of protochelins will likely require involve-
ment of an NRPS encoded at a different genetic locus, possibly one
or both NRPSs found in cluster 2 (Fig. 7A). Among these,
AvCA_09680 is especially intriguing as it contains the domain
architecture C*-A-T, where C* represents a modified C domain
with an HHXXXDA signature motif (rather than the canonical
HHXXXDG sequence). A similar “unusual” C domain has been
shown to condense a diffusible N1-(2,3-dihydroxybenzoyl)nor-
spermidine group with T-domain-bound DHB-thioester in the
biosynthesis of vibriobactin (54). We therefore propose that this
unusual NRPS is involved in the production of protochelin and
derivatives B, E, and C (Fig. 7C, dashed lines 2 to 4). In the case of
protochelin B, aminochelin B is utilized as the diffusible substrate,
whereas biosyntheses of protochelins A/C and E require amino-
chelin A and putrescine, respectively. Generation of these kinds of
analogs, lacking a DHB moiety, was previously also observed for
vibriobactins (55). Thus, biosynthetic origins can be proposed for
many of the siderophore analogs using bioinformatic analyses.

Some species that we have detected may also be formed by
spontaneous postsynthesis reactions. In particular, protochelin F
may be derived from such a route for 3 reasons: (i) its structure is
characterized by a direct intramolecular cross-link between two
catechol rings hindering Fe binding; (ii) it has several isomers,
such as protochelin G, with the link between the catechol rings at
different positions arguing against a defined enzymatic synthesis;
and (iii) its concentration peaks late during growth, when proto-
chelin concentrations decrease (Fig. 5). A possible formation
mechanism in aerobic A. vinelandii cultures involves oxidation of
catechols to form cross-linked aromatic compounds, perhaps cat-
alyzed by the presence of Fe (56, 57).

Functions of multiple siderophore derivatives. In this study,
we observed a large number of previously unreported derivatives
of all the siderophores of A. vinelandii. The production of several
related siderophores by a single organism has been observed for
ferrioxamines, agrobactins, desferrichromes, enterobactins, my-
cobactins, and pyoverdines (23). The high sensitivity of our
LC-MS approach reveals that even with compounds for which
previously only one structure was known, such as for vibrioferrin,
azotochelin, or protochelin, there are a large number of less abun-
dant derivatives, vastly expanding on the known variations. Our
detailed comparison of metabolomic and genetic data for catechol
biosynthesis reveals a flexible substrate range and nonlinear sid-
erophore assembly as key mechanisms for generating chemical
diversity. These reactions give rise to structural modifications with
altered hydrophobicity, binding affinities, and kinetics of interac-
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FIG 7 Proposed biosynthesis for A. vinelandii siderophores. (A) Mining of the A. vinelandii strain CA genome data suggests that two NRPS clusters are involved
in catechol siderophore production. (B) Proposed biosynthesis pathway for monocatechol siderophores. (C) Proposed biosynthesis for bis- and tris-catechol
siderophores. Bold text indicates previously characterized catechols. Dashed lines indicate pathways for derivatives identified in this study (Fig. 4).
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tion with uptake transporters that natural selection may act upon
during structurally mediated evolution of new siderophore func-
tions.

Possible advantages of structural variation include the preven-
tion of binding or uptake of siderophores by competing organ-
isms. For example, it has been shown that streptomycetes produce
additional siderophores when grown in coculture with competing
strains (28). Structural variation of siderophores may also allow
the organism to optimize uptake depending on environmental Fe
chemistries (58), facilitate uptake of other required metals (e.g.,
Mo and V), or sequester toxic metals (e.g., W) (10). Siderophores
may also act as redox shuttles, even as signaling molecules, and can
serve multiple functions simultaneously (59). This leads to a fun-
damental reason for the vast structural variation: siderophore
structures could result from multiple selective pressures that re-
flect evolutionary arms races including not just competition for
low-abundance catalytic metals but also other processes. Future
untargeted siderophore metabolomics analyses will further im-
prove our understanding of conditions under which siderophores
are produced and how these conditions relate to siderophore
structural variations and function.
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